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A Total-Variation-Diminishing Finite-Difference The total variation (TV) of any physically admissible solution
Scheme for the Transient Response of a lou
Lossless Transmission Line vV = / a2 | @
Kyu-Pyung Hwang and Jian-Ming Jin does not increase in time [4]. The TV inof a discrete solution to
a scalar conservation law is defined by
TV (u) = Z |wigr — wil. 3

Abstract—Total-variation-diminishing (TVD) finite-difference schemes
have been used in computational fluid dynamics for accurate solutions
of fluid problems involving shock phenomena. This paper investigates A numerical solution is said to be of bounded TV or TV stable if
the possibility of their application in transient electromagnetic-wave e TV is uniformly bounded it and Ax. A numerical scheme is
problems. A lossless transmission line with a resistive load is considered to __. .
illustrate the application. A TVD Lax—Wendroff finite-difference scheme said to be TVD if
is presented for the numerical solution of transmission-line equations r ool cn
in rtJime domain. Numerical results show that the TVD sche?ne can TV (™) < TV (u") )
approximate the discontinuous waveforms with remarkable accuracy.

1

where n denotes the time level. Davis [5] showed that the TVD
Index Terms—Finite-difference method, transmission line, TVD algo- finite-difference scheme, which was analyzed by Sweby [6], can
rithm. be interpreted as a Lax—Wendroff scheme plus an upwind weighted
artificial dissipation term. The TVD finite-difference scheme used
in this paper to solve transmission-line equations in time domain
follows Davis’s approach in that the TVD artificial dissipation terms

The concept of a total-variation-diminishing (TVD) .algorithm’are separated from the basic Lax—Wendroff discretization terms.
has been developed in the computational fluid dynamics (CFD’S)General transmission-line equations are written as

community during the 1980’s for numerical finite-difference solutions

. INTRODUCTION

di v

of fluid problems involving shock phenomena [1]. A variety of L—+——+4+Ri=0 (5)
numerical schemes with the TVD property have been success- E)at g?
fully used in CFD's to find solutions containing discontinuities 08%.1_ a—l—i—sz =0 (6)

with remarkable accuracy. In this paper, the possibility of using

the TVD algorithm as a numerical technique is investigated favhere
simulating transient electromagnetic phenomena in computationalR resistance per unit lengt{{2/m);

electromagnetics. Transients involving discontinuous waveforms canL inductance per unit length (H/m);

be readily found in terminated transmission-line problems where aGG conductance per unit length (S/m);

step function or a rectangular pulse is applied at the input terminalC' capacitance per unit length (F/m).

by a voltage source. The transient response of a transmission ling, thjs paper, we assume th& = 0, G = 0, and L and C

has been obtained either as a sum of multiple reflections or ag@ constants for simplicity. To apply the TVD Lax—Wendroff finite-

sum of a theoretica”y infinite number of residue terms [2], [3] Thiaiﬁerence scheme to the above equationS, we may cast them in
paper proposes a TVD finite-difference scheme for calculating tRgnservation law form as follows:

transient response of a lossless transmission line terminated with a oU  OF
resistive load. The scheme uses the Lax—Wendroff discretization as En + 7
the basic time integration method and adds nonlinear discretization

terms effecting TVD property in each time step to control th&/here

=0 @)

numerically generated oscillations. These oscillations are nonphysical e _|v/L
o . . . U= F=|. . (8)
errors occurred in discontinuous numerical solutions because the v i/C
finite-difference approximation based on the Taylor series expansi n , .
. . ) . : L , , (7
is not valid for discontinuous functions. The TVD Lax—Wendrof'Irg cel andC’ are constants, (7) can be rewritten as
scheme is applied to the propagation of discontinuous pulses on a ou +A8_U -0 9)
lossless transmission line with a resistive load to demonstrate the ot 0z
capability of the TVD algorithm to eliminate spurious oscillations. where
U:H A:{O 1/L}. (10)
Il. FORMULATION v /¢ 0
To gain a basic concept of the TVD algorithm, consider a scaldhe matrixA is the constant coefficient system matrix for the given
conservation law transmission-line equations. Its eigenvalues are readily found as
_ 1 1
ou  Of XM= M= — 11)
o o @ VIC IC

which imply that the given system of partial differential equations
Manuscript received January 4, 1997; revised March 4, 1998. is hyperbolic. The matriX? and its inverseP~' which diagonalize
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which lead to In this TVD Lax—Wendroff scheme for transmission-line equations,

PplAP — -1/VLC 0 o0 13) _the dual _sets_of compute_ltions are performed for waves propagating
- 0 1/VILC |~ AT in both directions. That is,

'JF [p—
We can uséP~! to obtain the Riemann invariants or the characteristic U=Ut+U" = {l& } + {] } (20)
variables which remain constant along the two characteristic curves !

associated withh ™ and/\+ in the giVen SyStem of equations. That iSand LT+ andU~ are computed Separa’[ely in each time step_ This is

Q=P 'U for an easy and accurate implementation of the boundary condition
L [1VE —1/VE][i at both input and output terminals. First, considef = [iT, v "],
L/ﬁ 1/\/3} { } Frc_)m (15), the discretized equations for two components can be
written as

_ {71/2\/5 —7)/2@}

, n n 1/At\1 ” n
i/2/C  v/2VL i * =iy - §<A’)Z(U;’r+1 - ’U;.,r_1)

= ‘11} (14) 2
- . ]. At ]. Jr'”' . +
L’Z t3 <$) roih -2 +ill ) +d" @
whereg; andg. are the Riemann invariants associated with waves w1/ At . .
moving in the—z- and the+z-directions, respectively. e =vf - 5 <A )C (ltﬂ 1’:71>
Following Davis’'s approach, the system of partial differential i
equations for a lossless transmission line can be discretized as L[ At 1 & i " "
| z(z) ro(vh -2 il )+ @)
Uit =uy —(ﬁ) (Ui -7 )
2\ Az * where t/" and tJ" denote the TVD artificial dissipation terms
. . . n+1 n+41
AN o (g ——3 which produce a correcting numerical flux faf™" and o; """,
+ 5 Az ( b= 2U% + Uk 1) respectively. Using the TVD term expression in (15), we obtain
+ PDZ+1/2 (QZ+1 - Qz) - PDZ*l/Q (Q;\7 - QZ*I) t+” n n n n n n
(15) t}rn =Diy12P(Qr 11— Qi) —Dii_1 o P(Q — QY1)

wherez = kAz, t = nAt. Except for the last two terms involving the =D\ (fh k+1 q1 k)+ \/_(qz k41 (12 k)
variations of the Riemann invariants, the discretization is equivalent +1/2 ( 41 g q1 2 )+\/_(q2 Et1 qQ E )
to the Lax—Wendroff finite-difference scheme for the given system » n » n
of equations. In (15) g Y n \/_(Q1 k 41+L—1)+\/€(42 k <17+L—1)
q . ) —Di_1/2 ) + Rg
n n n n \/_(qlk —4q A—1)+\/E(QZL — 45 k—l)
Dk+1/2 = Dk+1/2I Dk—l/Z = Dk—l/‘zl (16) (23)
whereI denotes the identity matrix and
where
. 4 n _n . . .
Ditvige =DL (i) + Do (rich) ¢ | Z L[ VE =V (24)
+ q;rL L:r /\/€+'Uzr /\/f ’

=)o)+ 5 00)
Note thatg]” = 0 in this case because it is the Riemann invariant
n associated with waves propagating in the-direction. Therefore,
’ |:(rb(rk+1) -1 (23) reduces to

n n n n n 4 4 4
Di_1jp =Dl 1y (":5—1) + Dty (r,; ) [’T } = [Dk+1/2\/6(q2 k1 " D2k )}

+77' 7 7 7
2 Dltl»l/Z\/f(qjkﬁ»l_qjk)

17

+
_v + y (" v_ (A"
_7(1—1/ )|:1—@(7k1> + 3 (1+I/ ) _ D;Jj: 1/)\/6((171, q{"’_1) . (25)
Dkﬂ/z \/z(‘b F =0 k)
45(”'1: ) - 1} (18) Using (17) and (18), we have the discretized equations for the TVD

artificial dissipation terms as follows:

where v = ATAt/Az, v~ = ATAt/Az. In this paper, the S . . .
superscripts +” and “—" denote the associated wave propagatlonfl \/?7 (1 —v )[1 — a)( A+ )] (qQ*M1 - q;k)
directions. Here,DH]/2 acts only on the waves propagating in the

+
14 FRU FRU 4
z-direction andD[JH/2 acts only on the waves propagating in the - \/57 (1 -V ) [1 - (fx_1 )] (q2 BT 42 L:—]) (26)
_~-d|rect|on re i iy, andr will be given later as the ., VT (1Y oV (s — g
ratios of consecutive variations of the Riemann invariants computeél2 9 o 2 6+1 ~ Y2k
at the time level. ¢ is called the flux limiter, which controls the o+ N o I I
additional numerical contributions in a nonlinear fashion. There exist - \/37 (1 -V ) [1 - @(Y’k_])] (612 E — 42 L:—]) (27)

several types of flux limiter functions used in CFD’s [1]. In this paper,
the Superbee limiter proposed by Roe [7] is used for its excellef P re

resolution property in sharp discontinuities. It is defined as o qjk ey 4 T A
T )

¢(r) = max [0, min (27, 1), min (r, 2)]. (29) 92 k41 0 o r = 92 k-1
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Fig. 1. A lossless transmission line with a resistive load dnd 400 m.
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For U~ = [i~,v™]", a similar procedure applies. The resulting ! ’
discretized equations can be found as 04+ L
. i
_n I/7 _ , _n _n _n | .
t I\/67(1+V )[@(7'k+1> _1] (Q1 k41 _‘11k> ozt ! ‘\{ _

- \/Fg (1 + u*) [@(r;”) - 1} (Qf; - qlﬁll) (29)
t; = _\/fg (1 + u*) [@(7‘;§L> - 1} (QIZH - qf;f) il
VI (1= ) [o( ") =] (ah = ari) GO) ' '

200 250 300 350
where z(m)
" U =47 I P Fig. 2. Comparison of the TVD Lax-Wendroff solution and the basic
T T e (31) Lax-Wendroff solution with the exact voltage waveform after 400 time steps
41 k41 — 91 & 91 — 41 k—1 plotted in spaceR; = 3Rq, Ry = 2Ro.

IIl. NUMERICAL RESULTS

In this section, we present some numerical results to demonstrate
the advantages of the TVD scheme. The problem considered is a '[ "~~~ 77 1000 [
lossless transmission line with a resistive load, as illustrated in Fig. 1.
The internal resistoR, is connected in series with the voltage source ©°#
Vs. The characteristic resistance of the lineRlg and the resistance
of the load isR;. In all the calculations, we sehz = 1 m and
At = 3 ns.

The propagation of a rectangular voltage pulse is considered fir
to verify the TVD property of the proposed finite-difference scheme.
The voltage waveform is specified by the function of time at the
voltage source as

Vi) =3[U(t—t1) = Ut —t2)] (V) (32) °

o
)

— TVD Lax—Wendroff
— — basic Lax-Wendroff
— - Exact

0.4

v(220.25d) / Vst

aF

L L L
o] 1 2 3 5
t/Td

@

wheret; = 150 ns,t2 = 300 ns in this case. The results are shown in
Fig. 2. The basic Lax—-Wendroff numerical solution clearly exhibits
the spurious oscillations mainly due to high-frequency numerical-
dispersion errors. The TVD Lax—Wendroff numerical solution is free 1-#
from the spurious errors and resolves the jumps in several grid points,,
compared with the exact solution, which is obtained by the spatial
translation of the voltage waveform incident at the input terminals. |
The numerical dispersion and dissipation of the Lax—Wendroff finite- 1.2
difference scheme is dependent upon the Courant numbethich
is given in our case as

14

0.8

i(2=0.25d) /Ist

+ At
Az

A

v= . (33)

0.6 ' B

— TVD Lax—Wendroff
The resolution of the TVD Lax-Wendroff solution around the dis- ®*f T paelo Laxcwendroft i
continuities is known to be practically independent of the number of o2 .
time steps and the Courant number within its stability limit [1]. The . ‘ ‘ )
stability condition of the Lax—Wendroff scheme requites< 1. In ° ! 2 3 4
all the numerical results in this paper, the Courant number of 0.9 is ®)
used for practical comparison.

To demonstrate the accuracy of the proposed finite-different®- 31 rTransient response of the lossless transmis;ion line computed at
scheme, the computed TVD solutions are compared with the exég_f 0.25d versus the normalized timé; = 3Ry, Ry = 21y. (a) Voltage.

. . . X . . Current. (Note that the TVD Lax—Wendroff solution coincides with the
solutions which are found using the multiple reflection diagra@yact solution.)

T
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method exhibit spurious oscillations and converge to a final result,

which deviates from the exact solution because of error accumulation.
A time-varying load with a pulse-train input is considered next,

for which the multiple reflection calculation becomes cumbersome.

In this case,

0<t<T

Va(t) =2[U() — Ultw)] (V),

(36)
andV,(t) = Vi(¢t + T) for all t. The time-varying load is such that
its resistance changes exponentially fr8if, to R, as follows:
Ri.(t) = 3Ro — 2Ry [1 - e—t/fo]. (37)
Fig. 4 compares the voltage and current responses computed at
z = 0.25d using the TVD Lax—Wendroff and the basic Lax—\Wendroff
finite-difference methods. The comparison shows that the TVD
solutions describe the complicated discontinuous waveforms with-
out spurious oscillation. Finally, we note that the computing time
using the TVD method is about two times that using the basic
Lax—Wendroff method. The time-domain TVD finite-difference ap-
proach proposed in this paper could find further applications in
time-dependent situations such as the example considered here.

IV. CONCLUSION

In this paper, the TVD algorithm has been introduced for the
finite-difference solution of transient electromagnetic-wave problems.
To demonstrate its application, the Lax—Wendroff finite-difference
scheme has been adapted with the TVD enhancement for the numer-
ical solution of the transient response of a lossless transmission-line
system. The TVD Lax-Wendroff solutions have demonstrated a
remarkable accuracy in predicting transient waveforms consisting of
numerous discontinuities. Further work is being carried out for more

Fig. 4. Transient response of the lossless transmission line with challenging applications in electromagnetics.

time-varying resistive load computed at= 0.25d versus the normalized
time. Ry = Ro, T = 300 ns,t,, = 150 ns,tp = 5us. (a) Voltage. (b)
Current.

method [3]. The response to a step function of the given transmissior[lz-]

line system is given in Fig. 3. In this case,
Ve=30@1#) (V) (34)

and the normalized voltage and current responses computeg=at

0.25d are plotted versus the normalized time. The normalizatiort?!

factors are defined as

T, = dVIC R Vs

o= -y, [,=— " (35
¢ Rg + RL Rg + RL ( )

Ist
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