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A Total-Variation-Diminishing Finite-Difference
Scheme for the Transient Response of a

Lossless Transmission Line

Kyu-Pyung Hwang and Jian-Ming Jin

Abstract—Total-variation-diminishing (TVD) finite-difference schemes
have been used in computational fluid dynamics for accurate solutions
of fluid problems involving shock phenomena. This paper investigates
the possibility of their application in transient electromagnetic-wave
problems. A lossless transmission line with a resistive load is considered to
illustrate the application. A TVD Lax–Wendroff finite-difference scheme
is presented for the numerical solution of transmission-line equations
in time domain. Numerical results show that the TVD scheme can
approximate the discontinuous waveforms with remarkable accuracy.

Index Terms—Finite-difference method, transmission line, TVD algo-
rithm.

I. INTRODUCTION

The concept of a total-variation-diminishing (TVD) algorithm
has been developed in the computational fluid dynamics (CFD’s)
community during the 1980’s for numerical finite-difference solutions
of fluid problems involving shock phenomena [1]. A variety of
numerical schemes with the TVD property have been success-
fully used in CFD’s to find solutions containing discontinuities
with remarkable accuracy. In this paper, the possibility of using
the TVD algorithm as a numerical technique is investigated for
simulating transient electromagnetic phenomena in computational
electromagnetics. Transients involving discontinuous waveforms can
be readily found in terminated transmission-line problems where a
step function or a rectangular pulse is applied at the input terminal
by a voltage source. The transient response of a transmission line
has been obtained either as a sum of multiple reflections or as a
sum of a theoretically infinite number of residue terms [2], [3]. This
paper proposes a TVD finite-difference scheme for calculating the
transient response of a lossless transmission line terminated with a
resistive load. The scheme uses the Lax–Wendroff discretization as
the basic time integration method and adds nonlinear discretization
terms effecting TVD property in each time step to control the
numerically generated oscillations. These oscillations are nonphysical
errors occurred in discontinuous numerical solutions because the
finite-difference approximation based on the Taylor series expansion
is not valid for discontinuous functions. The TVD Lax–Wendroff
scheme is applied to the propagation of discontinuous pulses on a
lossless transmission line with a resistive load to demonstrate the
capability of the TVD algorithm to eliminate spurious oscillations.

II. FORMULATION

To gain a basic concept of the TVD algorithm, consider a scalar
conservation law

@u

@t
+
@f

@x
= 0: (1)
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The total variation (TV) of any physically admissible solution

TV =
@u

@x
dx (2)

does not increase in time [4]. The TV inx of a discrete solution to
a scalar conservation law is defined by

TV (u) =
i

jui+1 � uij: (3)

A numerical solution is said to be of bounded TV or TV stable if
the TV is uniformly bounded int and�x. A numerical scheme is
said to be TVD if

TV (un+1) � TV (un) (4)

where n denotes the time level. Davis [5] showed that the TVD
finite-difference scheme, which was analyzed by Sweby [6], can
be interpreted as a Lax–Wendroff scheme plus an upwind weighted
artificial dissipation term. The TVD finite-difference scheme used
in this paper to solve transmission-line equations in time domain
follows Davis’s approach in that the TVD artificial dissipation terms
are separated from the basic Lax–Wendroff discretization terms.

General transmission-line equations are written as

L
@i

@t
+
@v

@z
+Ri =0 (5)

C
@v

@t
+

@i

@z
+Gv =0 (6)

where

R resistance per unit length(
=m);
L inductance per unit length (H/m);
G conductance per unit length (S/m);
C capacitance per unit length (F/m).

In this paper, we assume thatR = 0, G = 0, and L and C
are constants for simplicity. To apply the TVD Lax–Wendroff finite-
difference scheme to the above equations, we may cast them in
conservation law form as follows:

@UUU

@t
+
@FFF

@z
= 0 (7)

where

UUU =
i
v

FFF =
v=L
i=C

: (8)

SinceL andC are constants, (7) can be rewritten as

@UUU

@t
+AAA

@UUU

@z
= 0 (9)

where

UUU =
i
v

AAA =
0 1=L

1=C 0
: (10)

The matrixAAA is the constant coefficient system matrix for the given
transmission-line equations. Its eigenvalues are readily found as

�� = � 1p
LC

�+ =
1p
LC

(11)

which imply that the given system of partial differential equations
is hyperbolic. The matrixPPP and its inversePPP�1 which diagonalize
AAA can be found as

PPP =

p
C

p
C

�pL p
L

PPP�1 =
1=2

p
C �1=2pL

1=2
p
C 1=2

p
L

(12)
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which lead to

PPP�1AAAPPP =
�1=

p
LC 0

0 1=
p
LC

=
�� 0
0 �+

: (13)

We can usePPP�1 to obtain the Riemann invariants or the characteristic
variables which remain constant along the two characteristic curves
associated with�� and�+ in the given system of equations. That is,

QQQ = PPP�1UUU

=
1

2

1=
p
C �1=

p
L

1=
p
C 1=

p
L

i
v

=
i=2

p
C �v=2

p
L

i=2
p
C v=2

p
L

=
q1
q2

(14)

whereq1 and q2 are the Riemann invariants associated with waves
moving in the�z- and the+z-directions, respectively.

Following Davis’s approach, the system of partial differential
equations for a lossless transmission line can be discretized as

UUUn+1
k =UUUn

k �
1

2

�t

�z
AAA UUUn

k+1 �UUUn
k�1

+
1

2

�t

�z

2

AAA2 UUUn
k+1 � 2UUUn

k +UUUn
k�1

+ PPPDDDn
k+1=2 QQQn

k+1 �QQQn
k � PPPDDDn

k�1=2 QQQn
k �QQQn

k�1

(15)

wherez = k�z, t = n�t. Except for the last two terms involving the
variations of the Riemann invariants, the discretization is equivalent
to the Lax–Wendroff finite-difference scheme for the given system
of equations. In (15),

DDDn
k+1=2 = Dn

k+1=2III DDDn
k�1=2 = Dn

k�1=2III (16)

whereIII denotes the identity matrix and

Dn
k+1=2 =D+

k+1=2 r+k +D�k+1=2 r�k+1

=
�+

2
1� �+ 1� � r+k +

��

2
1 + ��

� � r�k+1 � 1 (17)

Dn
k�1=2 =D+

k�1=2 r+k�1 +D�k+1=2 r�k

=
�+

2
1� �+ 1� � r+k�1 +

��

2
1 + ��

� � r�k � 1 (18)

where �+ = �+�t=�z, �� = ���t=�z. In this paper, the
superscripts “+” and “�” denote the associated wave propagation
directions. Here,D+

k+1=2 acts only on the waves propagating in the

+z-direction andD�k+1=2 acts only on the waves propagating in the

�z-direction.r+k , r�k+1, r+k�1, andr�k will be given later as the
ratios of consecutive variations of the Riemann invariants computed
at the time leveln. � is called the flux limiter, which controls the
additional numerical contributions in a nonlinear fashion. There exist
several types of flux limiter functions used in CFD’s [1]. In this paper,
the Superbee limiter proposed by Roe [7] is used for its excellent
resolution property in sharp discontinuities. It is defined as

�(r) = max [0;min (2r; 1);min (r; 2)]: (19)

In this TVD Lax–Wendroff scheme for transmission-line equations,
the dual sets of computations are performed for waves propagating
in both directions. That is,

UUU = UUU+ +UUU� =
i+

v+
+

i�

v�
(20)

andUUU+ andUUU� are computed separately in each time step. This is
for an easy and accurate implementation of the boundary condition
at both input and output terminals. First, considerUUU+ = [i+; v+]T .
From (15), the discretized equations for two components can be
written as

i+k = i+k �
1

2

�t

�z

1

L
v+k+1 � v+k�1

+
1

2

�t

�z

2
1

LC
i+k+1 � 2i+k + i+k�1 + t+1 (21)

v+k = v+k �
1

2

�t

�z

1

C
i+k+1 � i+k�1

+
1

2

�t

�z

2
1

LC
v+k+1 � 2v+k + v+k�1 + t+2 (22)

where t+1 and t+2 denote the TVD artificial dissipation terms
which produce a correcting numerical flux fori+k and v+k ,
respectively. Using the TVD term expression in (15), we obtain

t+1
t+2

=Dn
k+1=2PPP (QQQ

n
k+1�QQQ

n
k)�Dn

k�1=2PPP (QQQ
n
k�QQQ

n
k�1)

=Dn
k+1=2

p
C q+

1 k+1�q+
1 k +

p
C q+

2 k+1�q+
2 k

�
p
L q+

1 k+1�q+
1 k +

p
L q+

2 k+1�q+
2 k

�Dn
k�1=2

p
C q+

1 k�q+
1 k�1 +

p
C q+

2 k�q+
2 k�1

�
p
L q+

1 k�q+
1 k�1 +

p
L q+

2 k�q+
2 k�1

(23)

where

q+
1 k

q+
2 k

=
1

2

i+k =
p
C � v+k =

p
L

i+k =
p
C + v+k =

p
L

: (24)

Note thatq+1 = 0 in this case because it is the Riemann invariant
associated with waves propagating in the�z-direction. Therefore,
(23) reduces to

t+1
t+2

=
D+

k+1=2

p
C q+

2 k+1 � q+
2 k

D+

k+1=2

p
L q+

2 k+1�q+
2 k

�
D+

k�1=2

p
C q+

2 k�q+
2 k�1

D+

k�1=2

p
L q+

2 k�q+
2 k�1

: (25)

Using (17) and (18), we have the discretized equations for the TVD
artificial dissipation terms as follows:

t+1 =
p
C
�+

2
1� �+ 1� � r+k q+2 k+1 � q+2 k

�
p
C
�+

2
1� �+ 1� � r+k�1 q+2 k � q+2 k�1 (26)

t+2 =
p
L
�+

2
1� �+ 1� �(r+k q+2 k+1 � q+2 k

�
p
L
�+

2
1� �+ 1� � r+k�1 q+2 k � q+2 k�1 (27)

where

r+k =
q+
2 k � q+

2 k�1

q+
2 k+1 � q+

2 k

r+k�1 =
q+
2 k�1 � q+

2 k�2

q+
2 k � q+

2 k�1

: (28)
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Fig. 1. A lossless transmission line with a resistive load andd = 400 m.

For UUU� = [i�; v�]T , a similar procedure applies. The resulting
discretized equations can be found as

t
�

1 =
p
C
��

2
1 + �

�

� r
�

k+1 � 1 q
�

1 k+1 � q
�

1 k

�
p
C
��

2
1 + �

�

� r
�

k � 1 q
�

1 k � q
�

1 k�1 (29)

t
�

2 =�
p
L
��

2
1 + �

�

� r
�

k+1 � 1 q
�

1 k+1 � q
�

1 k

+
p
L
��

2
1� �

�

� r
�

k � 1 q
�

1 k � q
�

1 k�1 (30)

where

r
�

k+1 =
q�
1 k+2 � q�

1 k+1

q�
1 k+1 � q�

1 k

r
�

k =
q�
1 k+1 � q�

1 k

q�
1 k � q�

1 k�1

: (31)

III. N UMERICAL RESULTS

In this section, we present some numerical results to demonstrate
the advantages of the TVD scheme. The problem considered is a
lossless transmission line with a resistive load, as illustrated in Fig. 1.
The internal resistorRg is connected in series with the voltage source
Vs. The characteristic resistance of the line isR0 and the resistance
of the load isRL. In all the calculations, we set�z = 1 m and
�t = 3 ns.

The propagation of a rectangular voltage pulse is considered first
to verify the TVD property of the proposed finite-difference scheme.
The voltage waveform is specified by the function of time at the
voltage source as

Vs(t) = 3[U(t� t1)� U(t� t2)] (V) (32)

wheret1 = 150 ns,t2 = 300 ns in this case. The results are shown in
Fig. 2. The basic Lax–Wendroff numerical solution clearly exhibits
the spurious oscillations mainly due to high-frequency numerical-
dispersion errors. The TVD Lax–Wendroff numerical solution is free
from the spurious errors and resolves the jumps in several grid points,
compared with the exact solution, which is obtained by the spatial
translation of the voltage waveform incident at the input terminals.
The numerical dispersion and dissipation of the Lax–Wendroff finite-
difference scheme is dependent upon the Courant number�, which
is given in our case as

� = �
��t

�z
: (33)

The resolution of the TVD Lax–Wendroff solution around the dis-
continuities is known to be practically independent of the number of
time steps and the Courant number within its stability limit [1]. The
stability condition of the Lax–Wendroff scheme requires� � 1. In
all the numerical results in this paper, the Courant number of 0.9 is
used for practical comparison.

To demonstrate the accuracy of the proposed finite-difference
scheme, the computed TVD solutions are compared with the exact
solutions which are found using the multiple reflection diagram

Fig. 2. Comparison of the TVD Lax–Wendroff solution and the basic
Lax–Wendroff solution with the exact voltage waveform after 400 time steps
plotted in space.RL = 3R0, Rg = 2R0.

(a)

(b)

Fig. 3. Transient response of the lossless transmission line computed at
z = 0:25d versus the normalized time.RL = 3R0, Rg = 2R0. (a) Voltage.
(b) Current. (Note that the TVD Lax–Wendroff solution coincides with the
exact solution.)
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(a)

(b)

Fig. 4. Transient response of the lossless transmission line with a
time-varying resistive load computed atz = 0:25d versus the normalized
time. Rg = R0, T = 300 ns, tw = 150 ns, t0 = 5�s. (a) Voltage. (b)
Current.

method [3]. The response to a step function of the given transmission-
line system is given in Fig. 3. In this case,

Vs = 3U(t) (V) (34)

and the normalized voltage and current responses computed atz =
0:25d are plotted versus the normalized time. The normalization
factors are defined as

Td = d
p
LC Vst =

RL

Rg +RL
Vs Ist =

Vs

Rg +RL
: (35)

Thus, the voltage and the current converge to their steady-state values
Vst, Ist, respectively, as time goes on. Compared with the exact
solution, the transient voltage and current responses computed by the
TVD algorithm accurately predict the discontinuous staircase wave-
forms. However, the results computed by the basic Lax–Wendroff

method exhibit spurious oscillations and converge to a final result,
which deviates from the exact solution because of error accumulation.

A time-varying load with a pulse-train input is considered next,
for which the multiple reflection calculation becomes cumbersome.
In this case,

Vs(t) = 2[U (t)� U(tw)] (V); 0<t<T (36)

andVs(t) = Vs(t+ T ) for all t. The time-varying load is such that
its resistance changes exponentially from3R0 to R0 as follows:

RL(t) = 3R0 � 2R0 1� e
�t=t

: (37)

Fig. 4 compares the voltage and current responses computed at
z = 0:25d using the TVD Lax–Wendroff and the basic Lax–Wendroff
finite-difference methods. The comparison shows that the TVD
solutions describe the complicated discontinuous waveforms with-
out spurious oscillation. Finally, we note that the computing time
using the TVD method is about two times that using the basic
Lax–Wendroff method. The time-domain TVD finite-difference ap-
proach proposed in this paper could find further applications in
time-dependent situations such as the example considered here.

IV. CONCLUSION

In this paper, the TVD algorithm has been introduced for the
finite-difference solution of transient electromagnetic-wave problems.
To demonstrate its application, the Lax–Wendroff finite-difference
scheme has been adapted with the TVD enhancement for the numer-
ical solution of the transient response of a lossless transmission-line
system. The TVD Lax–Wendroff solutions have demonstrated a
remarkable accuracy in predicting transient waveforms consisting of
numerous discontinuities. Further work is being carried out for more
challenging applications in electromagnetics.
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